
 ISSN: 2277-9655

[Mehrotra* et al., 6(5): May, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [206]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

IMPLEMENTATION OF FFT ALGORITHM
Mitul Mehrotra*, Geetika Pandey, Mandeep Singh Narula

*Department of Electronics and Communication Engineering Jaypee Institute of Information

Technology, Noida, India

DOI: 10.5281/zenodo.573508

ABSTRACT
Fast Fourier Transform (FFT) is a fast and efficient way of computing Discrete Fourier Transform (DFT). FFT

is one of the exquisite and ubiquitous operations in the field of digital signal processing. Moreover, it is one of

the critical components in Orthogonal Frequency Division Multiplexing (OFDM) [5] systems. FFT can be of two

types, namely: Decimation in time (DIT) FFT and Decimation in frequency (DIF) FFT. For most of the real life

situations like audio/image/video processing etc., DIT-FFT has an advantage over DIF-FFT since it does not

require any output recording. In this paper, an efficient algorithm to compute 8 point FFT has been devised in

which a butterfly unit (stage-I) computes the output and then feeds those outputs as inputs to the next butterfly

units (stage-II/III) so as to compute the overall FFT.

KEYWORDS: FFT, DFT, Twiddle factor, Butterfly unit, Bit reversal.

INTRODUCTION

FFT is very popular for transforming a signal from time domain to frequency domain and it has quite an

interesting history starting from 1805, when Carl Fredrich Gauss tried to determine the orbits of various

asteroids from sample locations. He thereby developed the DFT algorithm even before Fourier published his

results for the same in 1822. He developed an algorithm similar to that of Cooley [4] and Tukey [4] but Gauss

never published his method or algorithm in his lifetime. It took another 160 years until Cooley and Tukey

reinvented the FFT. During this period of 160 years from 1805 to 1965, many other scientists invented various

efficient algorithms to compute FFT but none of them was as general as that of Gauss’s algorithm.

The results of FFT are same as that of DFT; the only difference is that the algorithm is optimised to remove the

redundant calculations, the FFT greatly reduces the amount of calculations required and hence reduces the time

required for the computation. Functionally, the FFT decomposes the set of data to be transformed into a series of

smaller data sets to be transformed. Then it decomposes those smaller sets into even smaller sets. At each stage

of processing, the results of the previous stage are combined in a special way. Finally, it calculates the DFT of

each small data set. DFT can be computed using the below given formula:

𝑋[𝑘] = ∑ 𝑥𝑘

𝑁−1

𝑘=0

 𝑒−(
2𝜋𝑗

𝑁
)𝑛𝑘 ; 𝑘 = 0,1, … . 𝑁 − 1.

A major drawback of this DFT algorithm is the computational complexity. For a sequence of length N, it has a

complexity given as: O(N2) hence it is not a very efficient method and here the FFT comes into the picture. FFT

significantly reduces the number of computations required for a sequence of length N from O(N2) to O(N logN)

where log is the base-2 logarithm. FFT operates by decomposing an N point time domain signal into N time

domain signals each composed of a single point. The second step is to calculate the N frequency spectra

corresponding to these N time domain signals. Lastly, the N spectra are synthesized into a single frequency

http://www.ijesrt.com/

 ISSN: 2277-9655

[Mehrotra* et al., 6(5): May, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [207]

spectrum. So we split the N-point data sequence into two N/2 point data sequences f1(n) and f2(n),

corresponding to the even-numbered and odd-numbered samples of x(n) respectively.

𝑓1(𝑛) = 𝑥(2𝑛)

𝑓2(𝑛) = 𝑥(2𝑛 + 1) ; 𝑛 = 0,1,2, … ,
𝑁

2
− 1.

Here f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and hence the resulting FFT is called a

decimation-in-time (DIT) algorithm. Now the N-point DFT can be expressed as:

𝑋(𝑘) = ∑ 𝑥(𝑛) 𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

 ; 𝑘 = 0,1,2, … , 𝑁 − 1.

= ∑ 𝑥(𝑛) 𝑊𝑁
𝑘𝑛

𝑁−1

𝑛 𝑒𝑣𝑒𝑛

 + ∑ 𝑥(𝑛) 𝑊𝑁
𝑘𝑛

𝑁−1

𝑛 𝑜𝑑𝑑

= ∑ 𝑥(2𝑚)𝑊𝑁
2𝑚𝑘

𝑁
2

−1

𝑚=0

 + ∑ 𝑥(2𝑚 + 1)𝑊𝑁
(2𝑚+1)𝑘

𝑁
2

−1

𝑚=0

IMPLEMENTATION OF FFT

To compute FFT, we need to break a data set into smaller data sets and then compute the DFT of each small set.

Figure 1 describes the implementation of 8-point DFT. We observe that computation is performed in three

stages, starting with the computation of four 2-point DFTs, then two 4-point DFTs, and finally one 8-point DFT.

x(0) X(0)

 x(4) x X(1)

x(2) X(2)

x(6) X(3)

x(1) X(4)

x(5) X(5)

x(3) X(6)

x(7) X(7)

Fig 1: FFT block diagram

2-point DFT

2-point DFT

2-point DFT

2-point DFT

Merge two

2-point DFTs

Merge two

2-point DFTs

Merge two 4-point

DFTs

http://www.ijesrt.com/

 ISSN: 2277-9655

[Mehrotra* et al., 6(5): May, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [208]

BUTTERFLY UNIT [7]

In radix-2 Cooley-Tukey algorithm, butterfly is simply a 2-point DFT that takes two inputs and gives two

outputs. Butterfly unit is the basic building block for FFT computation. The figure 2 shown below describes the

basic butterfly unit used in FFT implementation.

 a Z1=a+𝑾𝑵
𝒓 b

 𝑊𝑁
𝑟

 b Z2=a-𝑾𝑵
𝒓 b

 -1

Fig 2: Basic butterfly unit

Implementation of FFT requires the computation of butterfly unit at first, which takes two complex inputs ‘a’

and ‘b’ and a twiddle factor ‘W’. It generates two complex outputs ‘Z1’ and ‘Z2’.

 Input ‘b’ is multiplied with ‘W’ and then added to ‘a’ for the output ‘Z1’.

 Input ‘b’ is multiplied with ‘-1’ and then added to ‘a’ for the output ‘Z2’.

This basic butterfly unit is replicated four times each in the three stages of the FFT and the final output is

generated as shown in the figure 3 below:

 Stage 1 Stage 2 Stage 3

 x(0) X(0)

 x(4)

 𝑊8
0 -1 X(1)

 x(2) 𝑊8
0 -1 X(2)

 𝑊8
0 X(3)

 x(6) -1 𝑊8
2 -1

 x(1) 𝑊8
0 X(4)

 -1

 𝑊8
0 𝑊8

1

 x(5) -1 -1 X(5)

 𝑊8
2

 x(3) X(6)

 𝑊8
0 -1 -1

 𝑊8
0 𝑊8

3

 -1 𝑊8
2 -1 -1 X(7)

x(7)

Fig 3: FFT butterfly diagram

http://www.ijesrt.com/

 ISSN: 2277-9655

[Mehrotra* et al., 6(5): May, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [209]

BIT REVERSAL [8]

In FFT computation, the input bits need to be bit reversed so as to obtain the output bits in the normal

order. To achieve this, the input sequence is broken into even and odd parts based on their indexes.

Then these even parts are again broken down into even and odd parts. Same is done with odd parts

respectively. This procedure is continued until only two points are left. In this paper, the sequence is

separated in time domain. For example, if we consider the case where N=8, input sequence is x(0),

x(1), x(2), x(3), x(4), x(5), x(6), x(7) and after the bit reversal process, the output sequence obtained is

x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7) as shown in table 1 below:

Table 1: Bit reversal

RESULTS

Result of FFT for the following input has been verified on MATLAB:

x(n) = (1, 2, 4, 8, 16, 32, 64, 128);

and the output was recorded as:

y(n) = (255, 48+166i, -51+102i, -78+46i, -85, -78-46i, -51-102i, 48-166i);

The waveform of input sequence is shown in figure 5 below and the corresponding output sequence waveform is

shown in figure 6 below. Figure 4 displays the verified output on MATLAB software.

Fig 4: Output verification on MATLAB [9]

Input

Address
(binary)

x(0) 000

x(1) 001

x(2) 010

x(3) 011

x(4) 100

x(5) 101

x(6) 110

x(7) 111

Output
(bit reversed)

Address
(binary)

x(0) 000

x(4) 100

x(2) 010

x(6) 110

x(1) 001

x(5) 101

x(3) 011

x(7) 111

http://www.ijesrt.com/

 ISSN: 2277-9655

[Mehrotra* et al., 6(5): May, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [210]

Fig 5: Input sequence

Fig 6: Output sequence

http://www.ijesrt.com/

 ISSN: 2277-9655

[Mehrotra* et al., 6(5): May, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [211]

CONCLUSION

The Fast Fourier Transform (FFT) is simply a professional method to compute the Discrete Fourier Transform

(DFT). Use of FFT reduces the complexity and the time required for the computation of DFT. A verilog

implementation of floating point FFT with bit reversal has been generated using single precision floating point

number IEEE 754 standard.

REFERENCES

[1] Swartzlander, E.E and Saleh, H.H.,2012. FFT implementation with fused floating-point operations.

IEEE transactions on computers, 61(2), pp.284-288.

[2] Nussbaumer, H.J., 2012. Fast Fourier transform and convolution algorithms (Vol. 2). Springer Science

& Business Media.

[3] Chen, Y.H. and Chang, T.Y., 2012. A high-accuracy adaptive conditional-probability estimator for

fixed-width Booth multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(3),

pp.594-603.

[4] Puschel, M. and Moura, J.M., 2008. Algebraic signal processing theory: Cooley–Tukey type algorithms

for DCTs and DSTs. IEEE Transactions on Signal Processing, 56(4), pp.1502-1521.

[5] Lin, Y.W. and Lee, C.Y., 2007. Design of an FFT/IFFT processor for MIMO OFDM systems. IEEE

Transactions on Circuits and Systems I: Regular Papers, 54(4), pp.807-815.

[6] Frigo, M. and Johnson, S.G., 2005. The design and implementation of FFTW3. Proceedings of the

IEEE, 93(2), pp.216-231.

[7] Yeh, W.C. and Jen, C.W., 2003. High-speed and low-power split-radix FFT. IEEE Transactions on

Signal Processing, 51(3), pp.864-874.

[8] Rubio, M., Gómez, P. and Drouiche, K., 2002. A new superfast bit reversal algorithm. International

Journal of Adaptive Control and Signal Processing, 16(10), pp.703-707.

[9] Trefethen, L.N., 2000. Spectral methods in MATLAB. Society for Industrial and Applied Mathematics.

CITE AN ARTICLE:

Mehrotra, Mitul , Geetika Pandey, and Mandeep Singh Narula. "IMPLEMENTATION OF

FFT ALGORITHM ." INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES &

RESEARCH TECHNOLOGY 6.5 (2017): 206-11. Web. 10 May 2017.

<http://www.ijesrt.com/issues%20pdf%20file/Archive-2017/May-2017/28.pdf>.

http://www.ijesrt.com/

