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ABSTRACT 
Fast Fourier Transform (FFT) is a fast and efficient way of computing Discrete Fourier Transform (DFT). FFT 

is one of the exquisite and ubiquitous operations in the field of digital signal processing. Moreover, it is one of 

the critical components in Orthogonal Frequency Division Multiplexing (OFDM) [5] systems. FFT can be of two 

types, namely: Decimation in time (DIT) FFT and Decimation in frequency (DIF) FFT. For most of the real life 

situations like audio/image/video processing etc., DIT-FFT has an advantage over DIF-FFT since it does not 

require any output recording. In this paper, an efficient algorithm to compute 8 point FFT has been devised in 

which a butterfly unit (stage-I) computes the output and then feeds those outputs as inputs to the next butterfly 

units (stage-II/III) so as to compute the overall FFT.  
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INTRODUCTION 

FFT is very popular for transforming a signal from time domain to frequency domain and it has quite an 

interesting history starting from 1805, when Carl Fredrich Gauss tried to determine the orbits of various 

asteroids from sample locations. He thereby developed the DFT algorithm even before Fourier published his 

results for the same in 1822. He developed an algorithm similar to that of Cooley [4] and Tukey [4] but Gauss 

never published his method or algorithm in his lifetime. It took another 160 years until Cooley and Tukey 

reinvented the FFT. During this period of 160 years from 1805 to 1965, many other scientists invented various 

efficient algorithms to compute FFT but none of them was as general as that of Gauss’s algorithm. 

The results of FFT are same as that of DFT; the only difference is that the algorithm is optimised to remove the 

redundant calculations, the FFT greatly reduces the amount of calculations required and hence reduces the time 

required for the computation. Functionally, the FFT decomposes the set of data to be transformed into a series of 

smaller data sets to be transformed. Then it decomposes those smaller sets into even smaller sets. At each stage 

of processing, the results of the previous stage are combined in a special way. Finally, it calculates the DFT of 

each small data set. DFT can be computed using the below given formula: 

𝑋[𝑘]  = ∑ 𝑥𝑘

𝑁−1

𝑘=0

 𝑒−(
2𝜋𝑗

𝑁
)𝑛𝑘   ;         𝑘 = 0,1, … . 𝑁 − 1.  

 

A major drawback of this DFT algorithm is the computational complexity. For a sequence of length N, it has a 

complexity given as: O(N2) hence it is not a very efficient method and here the FFT comes into the picture. FFT 

significantly reduces the number of computations required for a sequence of length N from O(N2) to O(N logN) 

where log is the base-2 logarithm. FFT operates by decomposing an N point time domain signal into N time 

domain signals each composed of a single point. The second step is to calculate the N frequency spectra 

corresponding to these N time domain signals. Lastly, the N spectra are synthesized into a single frequency 
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spectrum. So we split the N-point data sequence into two N/2 point data sequences f1(n) and f2(n), 

corresponding to the even-numbered and odd-numbered samples of x(n) respectively. 

𝑓1(𝑛) =  𝑥(2𝑛) 

𝑓2(𝑛) =  𝑥(2𝑛 + 1) ;        𝑛 = 0,1,2, … ,
𝑁

2
− 1. 

Here f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and hence the resulting FFT is called a 

decimation-in-time (DIT) algorithm. Now the N-point DFT can be expressed as:  

𝑋(𝑘) =  ∑ 𝑥(𝑛) 𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

  ;        𝑘 = 0,1,2, … , 𝑁 − 1.  

= ∑ 𝑥(𝑛) 𝑊𝑁
𝑘𝑛

𝑁−1

𝑛    𝑒𝑣𝑒𝑛

  +   ∑ 𝑥(𝑛) 𝑊𝑁
𝑘𝑛

𝑁−1

𝑛    𝑜𝑑𝑑

 

= ∑ 𝑥(2𝑚)𝑊𝑁
2𝑚𝑘

𝑁
2

−1

𝑚=0

 +   ∑ 𝑥(2𝑚 + 1)𝑊𝑁
(2𝑚+1)𝑘

𝑁
2

−1

𝑚=0

  

IMPLEMENTATION OF FFT 

To compute FFT, we need to break a data set into smaller data sets and then compute the DFT of each small set. 

Figure 1 describes the implementation of 8-point DFT. We observe that computation is performed in three 

stages, starting with the computation of four 2-point DFTs, then two 4-point DFTs, and finally one 8-point DFT. 

x(0)                                       X(0) 

 x(4)              x X(1) 

x(2)                                                                                                                                                                 X(2)  

x(6)                                                                                                                                                                      X(3) 

x(1)                                                                                                                                                                      X(4) 

x(5)                                                                                                                                                                      X(5) 

x(3)                                                                                                                                                                      X(6)          

x(7)                                                                                                                                                                      X(7) 

 

Fig 1: FFT block diagram 
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2-point DFT 
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Merge two      
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Merge two 4-point 
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BUTTERFLY UNIT [7] 

In radix-2 Cooley-Tukey algorithm, butterfly is simply a 2-point DFT that takes two inputs and gives two 

outputs. Butterfly unit is the basic building block for FFT computation. The figure 2 shown below describes the 

basic butterfly unit used in FFT implementation. 

                                     a                                                                                        Z1=a+𝑾𝑵
𝒓 b                                                                                             

 

 

                                                 𝑊𝑁
𝑟                                                                                              

                      b                                                                                                  Z2=a-𝑾𝑵
𝒓 b                                                                                             

                                                                                 -1 

Fig 2: Basic butterfly unit 

 

Implementation of FFT requires the computation of butterfly unit at first, which takes two complex inputs ‘a’ 

and ‘b’ and a twiddle factor ‘W’. It generates two complex outputs ‘Z1’ and ‘Z2’. 

 Input ‘b’ is multiplied with ‘W’ and then added to ‘a’ for the output ‘Z1’.  

 Input ‘b’ is multiplied with ‘-1’ and then added to ‘a’ for the output ‘Z2’.   

This basic butterfly unit is replicated four times each in the three stages of the FFT and the final output is 

generated as shown in the figure 3 below: 

  Stage 1   Stage 2    Stage 3   

 x(0)           X(0)

            

 x(4)           

 𝑊8
0 -1          X(1)

            

            

 x(2)          𝑊8
0  -1       X(2)

            

 𝑊8
0                                                                                              X(3) 

 x(6) -1         𝑊8
2  -1       

 x(1)             𝑊8
0     X(4)

         -1   

 𝑊8
0             𝑊8

1     

 x(5) -1       -1   X(5)

               𝑊8
2     

 x(3)           X(6)

           𝑊8
0  -1    -1                 

 𝑊8
0              𝑊8

3                   

  -1          𝑊8
2               -1                                                     -1                                        X(7)    

x(7) 

Fig 3: FFT butterfly diagram 
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BIT REVERSAL [8] 

In FFT computation, the input bits need to be bit reversed so as to obtain the output bits in the normal 

order. To achieve this, the input sequence is broken into even and odd parts based on their indexes. 

Then these even parts are again broken down into even and odd parts. Same is done with odd parts 

respectively. This procedure is continued until only two points are left. In this paper, the sequence is 

separated in time domain. For example, if we consider the case where N=8, input sequence is x(0), 

x(1), x(2), x(3), x(4), x(5), x(6), x(7) and after the bit reversal process, the output sequence obtained is 

x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7) as shown in table 1 below: 

Table 1: Bit reversal 
       

 

 

 

 

          

RESULTS 

Result of FFT for the following input has been verified on MATLAB: 

x(n) = (1, 2, 4, 8, 16, 32, 64, 128); 

and the output was recorded as: 

y(n) = (255, 48+166i, -51+102i, -78+46i, -85, -78-46i, -51-102i, 48-166i); 

The waveform of input sequence is shown in figure 5 below and the corresponding output sequence waveform is 

shown in figure 6 below. Figure 4 displays the verified output on MATLAB software. 

 

Fig 4: Output verification on MATLAB [9] 

Input 

 

Address 
(binary) 

x(0) 000 

x(1) 001 

x(2) 010 

x(3) 011 

x(4) 100 

x(5) 101 

x(6) 110 

x(7) 111 

Output 
(bit reversed) 

Address 
(binary) 

x(0) 000 

x(4) 100 

x(2) 010 

x(6) 110 

x(1) 001 

x(5) 101 

x(3) 011 

x(7) 111 
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Fig 5: Input sequence 

 

 

Fig 6: Output sequence 
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CONCLUSION 

The Fast Fourier Transform (FFT) is simply a professional method to compute the Discrete Fourier Transform 

(DFT). Use of FFT reduces the complexity and the time required for the computation of DFT. A verilog 

implementation of floating point FFT with bit reversal has been generated using single precision floating point 

number IEEE 754 standard.  
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